Structural Twig Hash Indexing Scheme for XML Twig Query

Yi Mon Thet, ThiThiSoeNyunt, Yuzana
yimonthet.ucsy@gmail.com

Abstract schemes can be used in both tree-shaped XML ddta an
graph structured XML data.l-indexing scheme
Since XML (eXtensible Markup) is the popular (backward bisimilarity) [18] is one of the struclr
language for the data over the Internet, queryifdLX path summary indexing schemes that summarizes the
data is interested topic in research area. In order structural paths in XML data.lt can process thepsm
efficiently process the XML query, indexing schemespath queriesand can achieve precise answers. Howeve
are vital role in XML query processing systems.additional join processing operations are needed fo
Structural path summary indexing scheme is effilsien twig queries that can be achieved precise answer.
support for path queries and achieve precise ansiver In this paper,extendible hash table is proposed as
is also capable for solving the twig queries but twig indexing table for XML twig pattern query. XML
additional join processing steps are needed toeshi twig query is performed by combining structuralfpat
precise answer. In this paper, the extendible fiable indexing (1-index) and extendible hash indexing
is proposed as twig indexing table. It is combiméth schemes. Twig query is processed on both structural
existing 1-index (backward bisimilarity) structugadth ~ summary path index tree and extendible hash
indexing scheme for processing twig queries that ca table.Twig query consists of two parts: filteringrigs)
be achieved precise answer. As a result, preciseand result part. The filtering part(s) is processed
answers for twig query can be achieved withoutstructural path summary tree and the result part is
additional join processing steps. We have conducted extracted from twig hash tabldn structural path
a series of experiments on the DBLP XML datasets t@ummary index tree, structural relationships and
evaluate the performance of the proposed system. content searching (keys for hash table) are predess
In this process, partial results (key nodes) foshha
table are achieved.After achieving the partial itesu
from path summary index tree, keys are hashed to
1. Introduction generate pseudokey. It is used to find values dhat
associated of keys in hash table. When the vallepf
As the XML has become a popularity for data is extracted from hash table, common (root) nod# an
representation and information exchange on the webesult node of the twig query is needed to be obeck
XML data management and query processing havevith the extracted value. Since structural relatedes
attracted a lot of interesting in database commgunit are stored as values in hash table, structural
Elements, attributes and value nodes are the basiglationships of result part are also satisfied and
structure of XML data and element nodes areachieve precise answer for twig query without join
represented in nested hierarchy. According to the t Pprocessing steps.
structure of XML data, queries are specified aspii The remaining of this paper is organized as
expressions to retrieve data from the XML tree. Wan follows. Related works are discussed in sectiofn?2.
XML query languages [2, 3, 4, 9, 11] are proposed i section 3, background theory is presented. Data flo
literature. Among them XPath [3] and XQuery [2] are diagram, algorithms and overview of theproposed
recommended by W3C. Because of the variety ofsystem architectureare introduced in section 4. The
structural relationships between various elements i performance evaluation isdescribedin section 5.
XML data, structural index that reflects all of the Finally, conclusion and future work are presented i
structural relationships plays an important rolXML section 6.
query processing. Node indexing schemes[6, 7, B, 16
and path indexing (structural path summary) scheme$- Related Works
[5, 10, 13, 15, 18] are proposed. Node indexing) . _
. In this section,some research results which are
schemesdepend on many labeling approaches [12, 14, _)
21]and hold values that reflect the nodes’ posttion related to this paper are discussed.

L oy Milo and Suciu [18] proposed 1-indexing
within the structure of an XML tree [17]. Pathindex
[17] scheme when the source data is tree shaped dam. T

243

Keywords: structural path indexing,twig indexing, twig
query

l-index partitions the data nodes of a document
equivalence classes based on their back
bisimilarity from the root node to the indexed ng
For tree shaped data,iridexing scheme reduces t
size of thestructural summary to less than that ¢
Strong Data Guide However, It is complete and g&
for evaluating path queries but not précis for eatihg
twig queries. To reduce the size of-index, Kaushik
et al [15] proposed A(k) index. It also partitiotise
data nodes into equivalence clasbased on backwa
bisimilarity. Like 1index, A(k) index cannot achie
précised answers for twig querieChen et al. [10]
proposed D(k) index, which assigns different k eal
to different index nodes based on a specific g
workloads. Therefore, D(kpdex is more efficien
than A(k)index with regard to processing time ¢
storage space. However, D(k) index cannot supjoo!
twig query and post processing steps are need
achieve precise answe#biteboul, Bunemon, et al [*
introduced F&B inéx for twig queries that can |
achieved precise answers. It is based on both imgp
and outgoing (forward and backward) paths. Theeg
it can achieve precise answers in the initial stepd
improve efficiency. However, there are insufficii
memoryproblems for very large size index

3. Background Theory

In this section, XML data model and twig patts
query are described.

3.1. XML Data Mode€

As the nature of the XML document
hierarchical and nested structure, it is modelechale
labeledtree T = (R,V,E), where R is the root nc
which is the parent of the all other nodes and Yhé&
set of nodes (element nodes, attribute nodes afic
nodes.) Among them, element and attribute node
the internal nodes of tree and leaf nodes rept the
data values which are either a text in an elemeiain
attribute value. E is the set of edges which coh
element, sub-element, elemettribute, elemer-value,
and attributevalue pairs. Two nodes connected b
tree edge are in parent-child (P@lationship, and th
two nodes on the same path are in anc-descendant
(AD) relationship. Figure 1(a) shows a fragment
DBLP XML document and fig 1(b) shows data t
model of the XML document in fig 1(

<Bib>

<book>

<author>M. Tamer </author>
</book>

<paper></paper>

244

<paper>
<author>Frank Manola</authc
</paper>

<author>AmerDiwan</autho
</paper>

|
|
|
<paper @reviewer="Jim Gray |
|
|
</Bib> |

Figure 1(a). Fragment of DBLP XML document

- @
| 1
&GO o 3B

Frank Manola Jim Gray AmerDiwan

Figure 1(b). XML datatree model of figure 1(a).
3.2. Twig Pattern Query

The core query pattern in most standard X
query languages (e.g., XPathand XQuery) is alsa
treedike structure, which is often referred astwig
pattern In particular, an XPath query is norma
modeled as a twig patternquery. In a twig ern
qguery, an edge can be either si-lined or double-
lined,which constraints the two matched nodestimee
a PC relationship or an ADrelationship. Since agt
pattern normally models an XPath expression,
nodes of a twig pattern queare set to be a value
based predate condition. The process to find all -
occurrences of a twig pattern in an XML documer
calledtwig pattern matchingA matchof a twig pattern
Q in a document tree T is identified by a mappiogf
the query nodes in Q to tllwcument nodes in T, su
that: (i) eachquery node either has the same st
name as or is evaluated true based on
corresponding document node, depending onwhi
the query node is an element/attribute node. i@
relationship between the quenodes at the ends of
each “/" or “/I" edge in Q is satisfied by tl
relationship between the corresponding docur
nodes.For exampleXPathQue
Q1Bib/paper[/author="AmerDiawr")/revieweris
represented as twig pattern query in figui

Bib

paper

7N\

author reviewer

AmerDiwan

Figure 2.Example of Twig Pattern Query
Expression.

3.3.Bismilarity Algorithm

Bisimilarity algorithm [20]is applied in bott
graph structure and tree structure of XML diThere
are two types of bisimilarity, namely forward s
backward bisimilarity. In this section, tkward
bisimilarityconceptis presented because it is import
in this paperTwo nodes u and v in tree T are said tc
backward bisimilar if any two nodes u and v wit

, we have that (a) u and v have the same I
and (b) if u’ is a parent of then there is a parent v’
v such that and vice versa. Figure 3 shows
structural path summary index tree of the DBLP X
document in figure 1(a).

Bib

hook

/ \
/ \-\ s
D >
|
author‘}
>

O DD

Frank Manola

lim Gray AmerDiwan

M. Tamer

Figure 3. Structural Path Summary Index Tree
4. The Proposed System Architecture

In this section, the data flow diagram of t
proposed system architecture and algorsof hash
twig indexing scheme are describak then the query
processing on Twig Hashindexing Schen is
explained.

245

4.1. Data Flow Diagram of the Proposed
System Architecture

The proposed system consists of two st
preprocessing steps and XML query processing $te
preprocessing steps, backward bisimilarity meth®
used to build the structural path summary indee
and extendible hashing scheme is used for cre
twig index. In addition, containment labeling scheis
used to compute the structural relationships ofes
that are stored as values in twig hash ti

Preprocessing Stages Yoath Query Processing Stages

Rasedby :
Xpath parser .

partal esults fey)

enerate pseudokey
k
E: Bt vilie o hash tale
11| ondcheckamestorand resit
| s

‘Complete and Precise
answe for tug query

Figure 4.Data Flow Diagram of the Proposed
System Ar chitecture.

Create Structural i
PathSummaryndex | 1
Tree H
(Backward v
bisilritylgoritm |
| H

1| Parsedby
t| DOM parser

‘demem nodes and e odes
|

+| Compute Structurel
| relaionships between
1 leafnodes and element
| nodes fontainment
| abelngscheme)

Mathing
(Structural constaints
and content search)

relationship nodes and leaf nodes.

CreateHash Table
(Extendible Hash
Agorthm)

4.2. Overview of Twig Hash Indexing Scheme

For XML twig pattern queries, commoiroot)
node of the branch patisthe ancestor node that col
form the leafnodes in XML document triis observed.
Based on this observation, ancestor nodes, paoeiais
and child (leaf) nodes are stortogether as values in
extendible hash table for processing the twig gL
Twig queries in our system is processed on
structural path summary index tree-index) and
extendible hash twig index. Tg queries consists of
two parts: filtering part(s) ahresult part. The filterini
part(s) is processed stnuctural path summary tree-
index) and the result part is extracted from
extendible twig hash table. In structural path suamr
index tree, structural relationships of filteringrigs)
and keys dér extendible twig hash table are proces
In this process, partial results (key nodes)

extendible twig hash table are achieved. AfterAlgorithm 1:TwigQMatch (Structural path summary
achieving the partial results, keys are hashed tdlree, Twig Hash table, twig query)

generate the pseudo key for extracting the precisénput: atwig query Q with n nodes{qyp, ..., ¢h}
answer from extendible twig hash table. When thewith P-C and A-D relationships, X be Structurallpat
associated value of key is extracted from exterdibl summary tree, H be Twig hash table.

twig hash table, common (root) node and result radde Output : precise answer for twig query

the twig query is needed to be checked with thel. for each Xin X

associated relationship nodes of the extractedevalu 2. begin
Since structural related nodes are stored as \alue 3. while g {q1, b, ..., G} IN Q
extendible twig hash table, structural relationshgd 4. begin

result part are not needed to be computed again angl,
achieve precise answer for twig query without join g,

if g; matches with Xthen
check g contains in parent-child relationship

processing steps.

4.3. Creating extendible twig hash table

of X;in X

7. if gi contains in ancestor-descendent
relationship of Xin X then

8. expand ancestor-descendent to parent-child

Leaf (value) nodes are used as keys andelationship

structural relationship nodes are set as associated.

values of keys that are stored in extendible twaghh
table after the DBLP XML document is parsed by

DOM parser.Containment labeling scheme [21] is usedL1.
to compute the relationship nodes of XML data tree.
Ancestor nodes, parent nodes and child nodes arg3.

stored as value in twig hash table. Figure 5(a)wvsho
the pseudo keys for leaf nodes and figure 5(b) show
the extendible twig hash table.

H(M.Tamer)= 00000000000000011111111100000000
H(Frank Manola) = 01010100000000111111111111110000
H@Jim Gray)

=10001000000000011100000000000111

H(AmerDiwan) = 11111000000000011111100000000101

Figure5(a). Pseudo keysfor value(leaf) nodes.

00

M. Tame /author /boo

01
10

\ Frank Manoli/author /pape
11

Jim Gra» /reviewer/pape

‘ AmerDiwan/author /paper

Figure 5(b). Extendible Twig Hash Table
4.4. Query Processing in Twig Hash Table

In our system, twig query is processed on both
existing structural path summary index tree (1-k)de
and extendible twig hash table. The query procgssin
algorithm is presented in algorithm 1.

246

if g; is leaf nodes then
10. generate gas pseudo keys and retrieve
answer from twig hash table

R¥QMatch (X,q)
12. end
end
14. end

The filtering part(s) of twig query are first
processed. Line 5 checks whether the query npaledq
XML document element node; dre matched or not. If
match, it will continue to match the node in parent
child relationship. Line7 checks if; ccontains in
ancestor-descendant relationship aftken we expand
ancestor-descendent to parent-child relationshipe L
10 -12 generate the pseudo key for leaf nodes and
retrieved precise answer from extendible twig hash
table.

Twig pattern query in figure 2 is used to
illustrate how Extendible Twig hash Table. In above
this twig pattern query, two parts are divided.
Bib/paper/[author=AmerDiwan] is the filtering pamd
Bib/ paper/ reviewer is the result part. Filteripgrt is
processed on structural path summary index tree (1-
index). When the leaf node (AmerDiwan) is achieved,
pseudo key is generated for this node and seaech th
associated value of this pseudo key in extendiblg t
hash table. Finally, the common node (paper) and
result (review) node of twig query and their rethte
nodes of extracted value are needed to be checked.
Since the structural related nodes are stored lagva
in extendible twig hash table, the precise answer i
achieved for twig query without join processingpste

precise answers. In our twig hash indexing scheme,
returned answer for twig queries are precise withou

In this section, performance over twig queries isjoining processing steps. In both system, Compéten
evaluated in our Twig hash indexing scheme. In our(recall) is achieved 100% because all relevant
approach, we combine the hash table with existingdocuments are retrieved by the query.The following
structural indexing scheme. Hash-table is usedvag T figure shows returned answers of three tested egieri
index for processing the twig queries to avoid theand the execution time of 1-indexing scheme and twi
joining process. The relationship XML data nodes ar hash indexing scheme. Since our approach doesn't
stored as value in twig hash table. Twig query isneed to join for twig queries, the execution tinfieoor
processed on both structural path summary tree anepproach is faster than the 1-indexing scheme.
extendible twig hash table. By using hash tablecise

5. Performance Evaluation

answers are achieved for twig query without join o3 -

processing steps. The comparison execution time of &

our approach and backward bisimilarity indexing EHZ.S

scheme for twig queries is illustrated in figuré@.our § 2 M Backward
experiments are tested over the 127 MB of DBLP data gl.> bisimilarity
set [1].DBLP dataset is an XMLdocument, including g 1 = Twig Hash
information about papers, thesis, books and authors 205

our system, we selected the general three testigd tw § 0

queries for dblp data set. Non specific predicateryg, 2 a1l @2 Q3

predicate of equality comparison and multiple Twig Queries

predicate of different comparisons under one object

The queries are shown in Table 1. Figure 6. Execution Time of Backward bisimilarity

_ _ Indexing scheme and Twig hash I ndexing scheme.
Table 1. The experimental queries

6.Conclusion and Future Work

Data Query | Twig Queries
Set) _ _ _ _
DQ1 | dblp/phdthesis/[publisher]/authof In this paper, extendible twig hash indexing
DQ2 | dblp/article/[volume=TR-0244- table is combined with backward bisimilarity indegi
DBLP 12-93-165)/author __ , scheme for processing the twig query that can be
DQ3 dblp/article/[author=Sai Chai . . . i .
Kwan]/[author=H.Raymond achieved precise answers without join processiegsst
Strong]/[month=January]/title However, the proposed indexing scheme can only

evaluate the equality operators of twig queriesabee
extendible hash table is used as Twig indexing reehe
We will continue how to process inequality predécat
operators in extendible twig hash table as a péart o

Table 2. Extracted Results of Backward
Bisimilarity and Twig Hash Table

Twig | Backward Twig Hash future work.
Quer | Bisimilarity Indexing
ies Indexing References
Extracted| Executio| Extracte| Executio
Results | n Time| d n Time [1] http://iwww.cs.washington.edu/research/xmldatasata/d
(second)| Results | (second) /dblp/dblp.xml o
1 > 12 > 055 [2] w3C XML Query Specification,
Q)) Latest.http://www.w3.0rg/TR/xquery
[38] w3aC XML Path Language Specification,
: Latest.http://www.w3.0org/TR/xpat
Q2 |1 18 1 1 http:/ 3.0rg/TR/xpath
[4] S. Abitebouét al The Lorel Query Language for
Q3 1 2.5 1 21 Semistructured Data. In International Journal ogit2l
Libraries, 1(1):68-88.1997.

5] S. Abiteboul, P. Buneman, and D. Suciu, Data on the
Web: From Relations to Semistructured Data and XML.
Morgan Kaufmann, 1999.

In backward bisimilarity indexing scheme, the [
returned answers for three tested twig queriesnate

precise and many extra documents are included antf]

lead to the lower accuracy. Additional joining

processes (post processing steps) are needediévach
247

S.Al-Khalifa, H.V.Jagadish, J.M.Patel, Y.Wu, N.Kasl
and D.Srivastava. Structural Joins: A primitive for
efficient XML query pattern matching. In Proc.of IED
2002, pp.141-154.

[71 N.Bruno, N.Koudas and D.Srivastava. Holistic twig Information. In Proc.of the 17 Australasian Database

joins: Optimal XML pattern matching. In Proc.of Conference, 2006, pp. 59-68.

SIGMOD, 2002, pp.310-321. [15] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes,
[8] S.Chein,Z.Vagena, D.Zhang, V.Tsotras, C.Zaniolo. “Exploiting Local Similarity for Indexing Paths in

Efficient structural joins on indexed XML documenits Graph-Structured Data,” Proc. M8EEE Intl Conf.

Proc. of 28' International Conference on Very Large Data Eng. (ICDE '02), 2002.

Data Bases, 2002, pp. 263-274. [16] Q.Li, B.Moon. Indexing and querying XML data for
[9] T. Chinenyanga and N. Kushmerick. An Expressive and regular path expressions. In Proc. of"2iternational

Efficient Language for XML Information Retrieval. In Conference on Very Large Data Bases, 2001, pp. 361-

Journal of the American Society for Inf.Sci. anccfig 370.

53 (6):438-453, 2002. [17] S.Mohammad and P.Martin. XML Structural Indexes.
[10] Q. Chen, A. Lim, and K.W. Ong, “D(K)-Index: An Technical Report 2009-560, School of Computing,

Adaptive Structural Summary for Graph-Structured Queen's University, June 2009.

Data,” Proc. of 2% ACM SIGMOD Intl Conf. [18] T. Milo and D. Suciu, “Index Structures for Path

Management of Data (SIGMOD '03), 2003. Expressions,” Proc. of7Int'| Conf. Database Theory

[11] A. Deutsch, M. Fernandez, D. Florescu, A.Levy and (ICDT '99), 1999.

D.Suciu. XML-QL:A query language for [19] P.O'Neil, E.O’Neil, S.Pal, |.Cseri, G.Schaller and
XML.InProc.of 8"Interntational World Wide Web N.Westbury. ORDPATHS: Insert-Friendly XML Node
Conference,1999. Labels. In Proc.of SIGMOD, 2004, pp. 903-908.

[12] G.Gou, R.Chirkova. Efficiently Querying Large XML [20] D. Park. Concurrency and automata on infinite
Data Repositories: A Survey. Transactions on sequences. In Theoretical Computer Sciend®,Gh-
Knowledge and Data Engineering®07,19(10), 1381- Conf, LNCS 104, pages 167-183. Springer-Verlag,
1403. Karlsruhe, Mar. 1981.

[13] R. Goldman and J. Widom, “DataGuides: Enabling
Query Formulation and Optimization in Semistructure [21] C.Zhang, J.Naughton, D.DeWitt, Q.Luo and G.Lohman.

Databases,”Proc. 23rd Int'l Conf. Very Large Data On Supporting containment Queries in Relational
Bases (VLDB '97), 1997. Database Management Systems. In Proc. of SIGMOD,
[14] D.K.Fisher, F.Lam, W.M.Shui and R.K.Wong.Dynamic 2001, pp.425

Labeling Schemes for Ordered XML Based on Type

248

