
243

Structural Twig Hash Indexing Scheme for XML Twig Query

Yi Mon Thet, ThiThiSoeNyunt, Yuzana
yimonthet.ucsy@gmail.com

Abstract

Since XML (eXtensible Markup) is the popular
language for the data over the Internet, querying XML
data is interested topic in research area. In order to
efficiently process the XML query, indexing schemes
are vital role in XML query processing systems.
Structural path summary indexing scheme is efficiently
support for path queries and achieve precise answer. It
is also capable for solving the twig queries but
additional join processing steps are needed to achieve
precise answer. In this paper, the extendible hash table
is proposed as twig indexing table. It is combined with
existing 1-index (backward bisimilarity) structural path
indexing scheme for processing twig queries that can
be achieved precise answer. As a result, precise
answers for twig query can be achieved without
additional join processing steps. We have conducted on
a series of experiments on the DBLP XML datasets to
evaluate the performance of the proposed system.

Keywords: structural path indexing,twig indexing, twig
query

1. Introduction

As the XML has become a popularity for data
representation and information exchange on the web,
XML data management and query processing have
attracted a lot of interesting in database community.
Elements, attributes and value nodes are the basic
structure of XML data and element nodes are
represented in nested hierarchy. According to the tree
structure of XML data, queries are specified as the path
expressions to retrieve data from the XML tree. Many
XML query languages [2, 3, 4, 9, 11] are proposed in
literature. Among them XPath [3] and XQuery [2] are
recommended by W3C. Because of the variety of
structural relationships between various elements in
XML data, structural index that reflects all of the
structural relationships plays an important role in XML
query processing. Node indexing schemes[6, 7, 8, 16]
and path indexing (structural path summary) schemes
[5, 10, 13, 15, 18] are proposed. Node indexing
schemesdepend on many labeling approaches [12, 14,
21]and hold values that reflect the nodes’ positions
within the structure of an XML tree [17]. Pathindexing

schemes can be used in both tree-shaped XML data and
graph structured XML data.1-indexing scheme
(backward bisimilarity) [18] is one of the structural
path summary indexing schemes that summarizes the
structural paths in XML data.It can process the simple
path queriesand can achieve precise answers. However,
additional join processing operations are needed for
twig queries that can be achieved precise answer.

In this paper,extendible hash table is proposed as
twig indexing table for XML twig pattern query. XML
twig query is performed by combining structural path
indexing (1-index) and extendible hash indexing
schemes. Twig query is processed on both structural
summary path index tree and extendible hash
table.Twig query consists of two parts: filtering part(s)
and result part. The filtering part(s) is processed on
structural path summary tree and the result part is
extracted from twig hash table. In structural path
summary index tree, structural relationships and
content searching (keys for hash table) are processed.
In this process, partial results (key nodes) for hash
table are achieved.After achieving the partial results
from path summary index tree, keys are hashed to
generate pseudokey. It is used to find values that are
associated of keys in hash table. When the value of key
is extracted from hash table, common (root) node and
result node of the twig query is needed to be checked
with the extracted value. Since structural related nodes
are stored as values in hash table, structural
relationships of result part are also satisfied and
achieve precise answer for twig query without join
processing steps.

The remaining of this paper is organized as
follows. Related works are discussed in section 2. In
section 3, background theory is presented. Data flow
diagram, algorithms and overview of theproposed
system architectureare introduced in section 4. The
performance evaluation isdescribedin section 5.
Finally, conclusion and future work are presented in
section 6.

2. Related Works

In this section,some research results which are
related to this paper are discussed.

Milo and Suciu [18] proposed 1-indexing
scheme when the source data is tree shaped data. The

1-index partitions the data nodes of a document into
equivalence classes based on their backward
bisimilarity from the root node to the indexed node.
For tree shaped data, 1-indexing scheme reduces the
size of the structural summary to less than that of a
Strong Data Guide However, It is complete and precise
for evaluating path queries but not précis for evaluating
twig queries. To reduce the size of a 1
et al [15] proposed A(k) index. It also partitions the
data nodes into equivalence classes based on backward
bisimilarity. Like 1-index, A(k) index cannot achieve
précised answers for twig queries.
proposed D(k) index, which assigns different k values
to different index nodes based on a specific query
workloads. Therefore, D(k)-index is more efficient
than A(k)-index with regard to processing time and
storage space. However, D(k) index cannot support for
twig query and post processing steps are needed to
achieve precise answers. Abiteboul, Bunemon, et al [5]
introduced F&B index for twig queries that can be
achieved precise answers. It is based on both incoming
and outgoing (forward and backward) paths. Therefore,
it can achieve precise answers in the initial steps and
improve efficiency. However, there are insufficient
memory problems for very large size indexes.

3. Background Theory

 In this section, XML data model and twig pattern
query are described.

3.1. XML Data Model

As the nature of the XML document is
hierarchical and nested structure, it is modeled as node
labeled tree T = (R,V,E), where R is the root node
which is the parent of the all other nodes and V is the
set of nodes (element nodes, attribute nodes and text
nodes.) Among them, element and attribute nodes are
the internal nodes of tree and leaf nodes represen
data values which are either a text in an element or an
attribute value. E is the set of edges which connect
element, sub-element, element-attribute, element
and attribute-value pairs. Two nodes connected by a
tree edge are in parent-child (PC) relationship, and the
two nodes on the same path are in ancestor
(AD) relationship. Figure 1(a) shows a fragment of
DBLP XML document and fig 1(b) shows data tree
model of the XML document in fig 1(a).

<Bib>
<book>
<author>M. Tamer </author>
</book>
<paper></paper>

244

index partitions the data nodes of a document into
equivalence classes based on their backward
bisimilarity from the root node to the indexed node.

indexing scheme reduces the
structural summary to less than that of a

Strong Data Guide However, It is complete and precise
for evaluating path queries but not précis for evaluating
twig queries. To reduce the size of a 1-index, Kaushik
et al [15] proposed A(k) index. It also partitions the

s based on backward
index, A(k) index cannot achieve

précised answers for twig queries. Chen et al. [10]
proposed D(k) index, which assigns different k values
to different index nodes based on a specific query

index is more efficient
index with regard to processing time and

storage space. However, D(k) index cannot support for
twig query and post processing steps are needed to

Abiteboul, Bunemon, et al [5]
ex for twig queries that can be

achieved precise answers. It is based on both incoming
and outgoing (forward and backward) paths. Therefore,
it can achieve precise answers in the initial steps and
improve efficiency. However, there are insufficient

problems for very large size indexes.

In this section, XML data model and twig pattern

As the nature of the XML document is
hierarchical and nested structure, it is modeled as node

tree T = (R,V,E), where R is the root node
which is the parent of the all other nodes and V is the
set of nodes (element nodes, attribute nodes and text
nodes.) Among them, element and attribute nodes are
the internal nodes of tree and leaf nodes represent the
data values which are either a text in an element or an
attribute value. E is the set of edges which connect

attribute, element-value,
value pairs. Two nodes connected by a

) relationship, and the
two nodes on the same path are in ancestor-descendant
(AD) relationship. Figure 1(a) shows a fragment of
DBLP XML document and fig 1(b) shows data tree
model of the XML document in fig 1(a).

<paper>

<author>Frank Manola</author>

</paper>

<paper @reviewer=“Jim Gray”>

<author>AmerDiwan</author>

</paper>

</Bib>

Figure 1(a). Fragment of DBLP XML document

Figure 1(b). XML data tree model of figure 1(a).

3.2. Twig Pattern Query

The core query pattern in most standard XML
query languages (e.g., XPathand XQuery) is also in a
tree-like structure, which is often referred as a
pattern. In particular, an XPath query is normally
modeled as a twig patternquery. In a twig patt
query, an edge can be either single
lined,which constraints the two matched nodes in either
a PC relationship or an ADrelationship. Since a twig
pattern normally models an XPath expression, leaf
nodes of a twig pattern query
based predicate condition. The process to find all the
occurrences of a twig pattern in an XML document is
called twig pattern matching. A
Q in a document tree T is identified by a mapping from
the query nodes in Q to the document nodes in T, such
that: (i) each query node either has the same string
name as or is evaluated true based on the
corresponding document node, depending onwhether
the query node is an element/attribute node. (ii) the
relationship between the query
each “/” or “//” edge in Q is satisfied by the
relationship between the corresponding document
nodes.For exampleXPathQuery
Q1:Bib/paper[/author=“AmerDiawn
represented as twig pattern query in figure 2.

<author>Frank Manola</author>

<paper @reviewer=“Jim Gray”>

<author>AmerDiwan</author>

Figure 1(a). Fragment of DBLP XML document

Figure 1(b). XML data tree model of figure 1(a).

The core query pattern in most standard XML
query languages (e.g., XPathand XQuery) is also in a

like structure, which is often referred as a twig
. In particular, an XPath query is normally

modeled as a twig patternquery. In a twig pattern
query, an edge can be either single-lined or double-
lined,which constraints the two matched nodes in either
a PC relationship or an ADrelationship. Since a twig
pattern normally models an XPath expression, leaf
nodes of a twig pattern query are set to be a value

cate condition. The process to find all the
occurrences of a twig pattern in an XML document is

. A match of a twig pattern
Q in a document tree T is identified by a mapping from

document nodes in T, such
query node either has the same string

name as or is evaluated true based on the
corresponding document node, depending onwhether
the query node is an element/attribute node. (ii) the
relationship between the query nodes at the ends of
each “/” or “//” edge in Q is satisfied by the
relationship between the corresponding document
nodes.For exampleXPathQuery

AmerDiawn”]/revieweris
represented as twig pattern query in figure 2.

Figure 2.Example of Twig Pattern Query

Expression.

3.3.Bisimilarity Algorithm

Bisimilarity algorithm [20] is applied in both
graph structure and tree structure of XML data.
are two types of bisimilarity, namely forward and
backward bisimilarity. In this section, bac
bisimilarityconcept is presented because it is important
in this paper. Two nodes u and v in tree T are said to be
backward bisimilar if any two nodes u and v with

, we have that (a) u and v have the same label,
and (b) if u’ is a parent of u, then there is a parent v’ of
v such that and vice versa. Figure 3 shows the
structural path summary index tree of the DBLP XML
document in figure 1(a).

Figure 3. Structural Path Summary Index Tree

4. The Proposed System Architecture

In this section, the data flow diagram of the
proposed system architecture and algorithm
twig indexing scheme are described and
processing on Twig Hash Indexing Scheme
explained.

245

of Twig Pattern Query

is applied in both
graph structure and tree structure of XML data. There
are two types of bisimilarity, namely forward and
backward bisimilarity. In this section, backward

is presented because it is important
Two nodes u and v in tree T are said to be

bisimilar if any two nodes u and v with
, we have that (a) u and v have the same label,

then there is a parent v’ of
and vice versa. Figure 3 shows the

structural path summary index tree of the DBLP XML

Figure 3. Structural Path Summary Index Tree

Proposed System Architecture

section, the data flow diagram of the
proposed system architecture and algorithmsof hash

and then the query
Indexing Scheme is

4.1. Data Flow Diagram of the Proposed
System Architecture

The proposed system consists of two steps:
preprocessing steps and XML query processing step. In
preprocessing steps, backward bisimilarity method is
used to build the structural path summary index tree
and extendible hashing scheme is used for creating
twig index. In addition, containment labeling scheme is
used to compute the structural relationships of nodes
that are stored as values in twig hash table.

Figure 4.Data Flow Diagram of the Proposed
System Architecture.

4.2. Overview of Twig Hash

For XML twig pattern queries, common (
node of the branch paths is the ancestor node that count
form the leaf nodes in XML document tree
Based on this observation, ancestor nodes, parent nodes
and child (leaf) nodes are stored
extendible hash table for processing the twig query.
Twig queries in our system is processed on both
structural path summary index tree (1
extendible hash twig index. Twi
two parts: filtering part(s) and result part. The filtering
part(s) is processed onstructural path summary tree (1
index) and the result part is extracted from the
extendible twig hash table. In structural path summary
index tree, structural relationships of filtering part(s)
and keys for extendible twig hash table are processed.
In this process, partial results (key nodes) for

4.1. Data Flow Diagram of the Proposed

The proposed system consists of two steps:
preprocessing steps and XML query processing step. In
preprocessing steps, backward bisimilarity method is
used to build the structural path summary index tree
and extendible hashing scheme is used for creating
wig index. In addition, containment labeling scheme is

used to compute the structural relationships of nodes
that are stored as values in twig hash table.

Figure 4.Data Flow Diagram of the Proposed
System Architecture.

Overview of Twig Hash Indexing Scheme

For XML twig pattern queries, common (root)
is the ancestor node that count

nodes in XML document tree is observed.
Based on this observation, ancestor nodes, parent nodes
and child (leaf) nodes are stored together as values in
extendible hash table for processing the twig query.
Twig queries in our system is processed on both
structural path summary index tree (1-index) and
extendible hash twig index. Twig queries consists of

d result part. The filtering
structural path summary tree (1-

index) and the result part is extracted from the
extendible twig hash table. In structural path summary
index tree, structural relationships of filtering part(s)

or extendible twig hash table are processed.
In this process, partial results (key nodes) for

246

extendible twig hash table are achieved. After
achieving the partial results, keys are hashed to
generate the pseudo key for extracting the precise
answer from extendible twig hash table. When the
associated value of key is extracted from extendible
twig hash table, common (root) node and result node of
the twig query is needed to be checked with the
associated relationship nodes of the extracted value.
Since structural related nodes are stored as value in
extendible twig hash table, structural relationships of
result part are not needed to be computed again and
achieve precise answer for twig query without join
processing steps.

4.3. Creating extendible twig hash table

Leaf (value) nodes are used as keys and
structural relationship nodes are set as associated
values of keys that are stored in extendible twig hash
table after the DBLP XML document is parsed by
DOM parser.Containment labeling scheme [21] is used
to compute the relationship nodes of XML data tree.
Ancestor nodes, parent nodes and child nodes are
stored as value in twig hash table. Figure 5(a) shows
the pseudo keys for leaf nodes and figure 5(b) shows
the extendible twig hash table.

H(M.Tamer)= 00000000000000011111111100000000

H(Frank Manola) = 01010100000000111111111111110000

H(Jim Gray) = 10001000000000011100000000000111

H(AmerDiwan) = 11111000000000011111100000000101

Figure 5(a). Pseudo keys for value(leaf) nodes.

Figure 5(b). Extendible Twig Hash Table

4.4. Query Processing in Twig Hash Table

In our system, twig query is processed on both
existing structural path summary index tree (1-index)
and extendible twig hash table. The query processing
algorithm is presented in algorithm 1.

Algorithm 1:TwigQMatch (Structural path summary
Tree, Twig Hash table, twig query)
Input : a twig query Q with n nodes {q1, q2, …, qn}
with P-C and A-D relationships, X be Structural path
summary tree, H be Twig hash table.
Output : precise answer for twig query
1. for each Xi in X
2. begin
3. while qi {q1, q2, …, qn} in Q
4. begin
5. if qi matches with Xi then
6. check qi contains in parent-child relationship
of Xi in X
7. if qi contains in ancestor-descendent
relationship of Xi in X then
8. expand ancestor-descendent to parent-child
relationship
9. if qi is leaf nodes then
10. generate qi as pseudo keys and retrieve
answer from twig hash table
11. RtTQMatch (Xi,qi)
12. end
13. end
14. end

The filtering part(s) of twig query are first
processed. Line 5 checks whether the query node qi and
XML document element node Xi are matched or not. If
match, it will continue to match the node in parent-
child relationship. Line7 checks if qi contains in
ancestor-descendant relationship of Xi, then we expand
ancestor-descendent to parent-child relationship. Line
10 -12 generate the pseudo key for leaf nodes and
retrieved precise answer from extendible twig hash
table.

Twig pattern query in figure 2 is used to
illustrate how Extendible Twig hash Table. In above
this twig pattern query, two parts are divided.
Bib/paper/[author=AmerDiwan] is the filtering part and
Bib/ paper/ reviewer is the result part. Filtering part is
processed on structural path summary index tree (1-
index). When the leaf node (AmerDiwan) is achieved,
pseudo key is generated for this node and search the
associated value of this pseudo key in extendible twig
hash table. Finally, the common node (paper) and
result (review) node of twig query and their related
nodes of extracted value are needed to be checked.
Since the structural related nodes are stored as values
in extendible twig hash table, the precise answer is
achieved for twig query without join processing steps.

2

11

10

01

00

Jim Gray /reviewer/paper

Frank Manola /author /paper

M. Tamer /author /book

AmerDiwan/author /paper

247

5. Performance Evaluation

In this section, performance over twig queries is
evaluated in our Twig hash indexing scheme. In our
approach, we combine the hash table with existing
structural indexing scheme. Hash-table is used as Twig
index for processing the twig queries to avoid the
joining process. The relationship XML data nodes are
stored as value in twig hash table. Twig query is
processed on both structural path summary tree and
extendible twig hash table. By using hash table, precise
answers are achieved for twig query without join
processing steps. The comparison execution time of
our approach and backward bisimilarity indexing
scheme for twig queries is illustrated in figure6. All our
experiments are tested over the 127 MB of DBLP data
set [1].DBLP dataset is an XMLdocument, including
information about papers, thesis, books and authors. In
our system, we selected the general three tested twig
queries for dblp data set. Non specific predicate query,
predicate of equality comparison and multiple
predicate of different comparisons under one object.
The queries are shown in Table 1.

Table 1. The experimental queries

Data
Set

Query Twig Queries

DBLP

DQ1 dblp/phdthesis/[publisher]/author
DQ2 dblp/article/[volume=TR-0244-

12-93-165]/author
DQ3 dblp/article/[author=Sai Choi

Kwan]/[author=H.Raymond
Strong]/[month=January]/title

Table 2. Extracted Results of Backward

Bisimilarity and Twig Hash Table

Twig
Quer
ies

Backward
Bisimilarity
Indexing

Twig Hash
Indexing

Extracted
Results

Executio
n Time
(second)

Extracte
d
Results

Executio
n Time
(second)

Q1 2 1.2 2 0.55

Q2 1 1.8 1 1

Q3 1 2.5 1 2.1

In backward bisimilarity indexing scheme, the
returned answers for three tested twig queries are not
precise and many extra documents are included and
lead to the lower accuracy. Additional joining
processes (post processing steps) are needed to achieve

precise answers. In our twig hash indexing scheme,
returned answer for twig queries are precise without
joining processing steps. In both system, Completeness
(recall) is achieved 100% because all relevant
documents are retrieved by the query.The following
figure shows returned answers of three tested queries
and the execution time of 1-indexing scheme and twig
hash indexing scheme. Since our approach doesn’t
need to join for twig queries, the execution time of our
approach is faster than the 1-indexing scheme.

Figure 6. Execution Time of Backward bisimilarity
Indexing scheme and Twig hash Indexing scheme.

6.Conclusion and Future Work

In this paper, extendible twig hash indexing
table is combined with backward bisimilarity indexing
scheme for processing the twig query that can be
achieved precise answers without join processing steps.
However, the proposed indexing scheme can only
evaluate the equality operators of twig queries because
extendible hash table is used as Twig indexing scheme.
We will continue how to process inequality predicate
operators in extendible twig hash table as a part of
future work.

References

[1] http://www.cs.washington.edu/research/xmldatasets/data
/dblp/dblp.xml

[2] W3C XML Query Specification,
Latest.http://www.w3.org/TR/xquery

[3] W3C XML Path Language Specification,
Latest.http://www.w3.org/TR/xpath

[4] S. Abiteboulet al. The Lorel Query Language for
Semistructured Data. In International Journal on Digital
Libraries, 1(1):68-88.1997.

[5] S. Abiteboul, P. Buneman, and D. Suciu, Data on the
Web: From Relations to Semistructured Data and XML.
Morgan Kaufmann, 1999.

[6] S.Al-Khalifa, H.V.Jagadish, J.M.Patel, Y.Wu, N.Koudas
and D.Srivastava. Structural Joins: A primitive for
efficient XML query pattern matching. In Proc.of ICDE,
2002, pp.141-154.

0

0.5

1

1.5

2

2.5

3

Q1 Q2 Q3

Backward

bisimilarity

Twig Hash

Twig Queries

Q
u

ery E
xecu

tion
 T

im
e(secon

d
)

248

[7] N.Bruno, N.Koudas and D.Srivastava. Holistic twig
joins: Optimal XML pattern matching. In Proc.of
SIGMOD, 2002, pp.310-321.

[8] S.Chein,Z.Vagena, D.Zhang, V.Tsotras, C.Zaniolo.
Efficient structural joins on indexed XML documents. In
Proc. of 28th International Conference on Very Large
Data Bases, 2002, pp. 263-274.

[9] T. Chinenyanga and N. Kushmerick. An Expressive and
Efficient Language for XML Information Retrieval. In
Journal of the American Society for Inf.Sci. and Tech.,
53 (6):438-453, 2002.

[10] Q. Chen, A. Lim, and K.W. Ong, “D(K)-Index: An
Adaptive Structural Summary for Graph-Structured
Data,” Proc. of 22nd ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’03), 2003.

[11] A. Deutsch, M. Fernandez, D. Florescu, A.Levy and
D.Suciu. XML-QL:A query language for
XML.InProc.of 8thInterntational World Wide Web
Conference,1999.

[12] G.Gou, R.Chirkova. Efficiently Querying Large XML
Data Repositories: A Survey. Transactions on
Knowledge and Data Engineering, 2007, 19(10), 1381-
1403.

[13] R. Goldman and J. Widom, “DataGuides: Enabling
Query Formulation and Optimization in Semistructured
Databases,”Proc. 23rd Int’l Conf. Very Large Data
Bases (VLDB ’97), 1997.

[14] D.K.Fisher, F.Lam, W.M.Shui and R.K.Wong.Dynamic
Labeling Schemes for Ordered XML Based on Type

Information. In Proc.of the 17th Australasian Database
Conference, 2006, pp. 59-68.

[15] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes,
“Exploiting Local Similarity for Indexing Paths in
Graph-Structured Data,” Proc. 18th IEEE Int’l Conf.
Data Eng. (ICDE ’02), 2002.

[16] Q.Li, B.Moon. Indexing and querying XML data for
regular path expressions. In Proc. of 27th International
Conference on Very Large Data Bases, 2001, pp. 361-
370.

[17] S.Mohammad and P.Martin. XML Structural Indexes.
Technical Report 2009-560, School of Computing,
Queen's University, June 2009.

[18] T. Milo and D. Suciu, “Index Structures for Path
Expressions,” Proc. of 7th Int’l Conf. Database Theory
(ICDT ’99), 1999.

[19] P.O’Neil, E.O’Neil, S.Pal, I.Cseri, G.Schaller and
N.Westbury. ORDPATHs: Insert-Friendly XML Node
Labels. In Proc.of SIGMOD, 2004, pp. 903-908.

[20] D. Park. Concurrency and automata on infinite
sequences. In Theoretical Computer Science, 5th GI-
Conf., LNCS 104, pages 167–183. Springer-Verlag,
Karlsruhe, Mar. 1981.

[21] C.Zhang, J.Naughton, D.DeWitt, Q.Luo and G.Lohman.

On Supporting containment Queries in Relational
Database Management Systems. In Proc. of SIGMOD,
2001, pp.425

